Interpreting ultrafast molecular fragmentation dynamics with ab initio electronic structure calculations.

نویسندگان

  • Carlos Trallero
  • Brett J Pearson
  • Thomas Weinacht
  • Kandis Gilliard
  • Spiridoula Matsika
چکیده

High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiscale modelling of naphthalocyanine-based molecular switch

Ab initio simulations aimed at modelling and interpreting STM induced molecular isomerization of naphthalocyanine molecule are presented. Free energy profile, reaction path and activation energies were obtained using the metadynamics method in the frame of Car-Parrinello Molecular Dynamics (CPMD). We propose a multiscale model of the molecular switch process, based on the Ehrenfest Molecular Dy...

متن کامل

Ab initio calculation of inelastic scattering.

Nonresonant inelastic electron and X-ray scattering cross sections for bound-to-bound transitions in atoms and molecules are calculated directly from ab initio electronic wavefunctions. The approach exploits analytical integrals of Gaussian-type functions over the scattering operator, which leads to accurate and efficient calculations. The results are validated by comparison to analytical cross...

متن کامل

Prediction of the material with highest known melting point from ab initio molecular dynamics calculations

Using electronic structure calculations, we conduct an extensive investigation into the Hf-Ta-C system, which includes the compounds that have the highest melting points known to date. We identify three major chemical factors that contribute to the high melting temperatures. Based on these factors, we propose a class of materials that may possess even higher melting temperatures and explore it ...

متن کامل

The Mn effect on magnetic structure of FeMn-B amorphous metals

Fe-rich Fe-B amorphous metals exhibit approximately collinear magnetic structure. When a certain amount of Fe atoms are replaced with Mn, the magnetic structure of the alloys is found to become non-collinear. We performed electronic structure calculations using the locally selfconsistent multiple scattering (LSMS) method for supercell samples generated by ab initio molecular dynamics simulation...

متن کامل

Ab initio calculations in a uniform magnetic field using periodic supercells.

We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 12  شماره 

صفحات  -

تاریخ انتشار 2008